sudo sh cuda_8.0.27_linux.run
注意:执行后会有一系列提示让你确认,但是注意,有个让你选择是否安装nvidia361驱动时,一定要选择否:
InstallNVIDIA AcceleratedGraphicsDriver for Linux-x86_64361.62?
因为前面我们已经安装了更加新的nvidia367,所以这里不要选择安装。其余的都直接默认或者选择是即可。
可能出现的错误:
当出现“unsupport complier”错误时,说明gcc版本太高,需要降低gcc版本。解决办法如下:
以gcc4.9与g++4.9为例
安装低版本gcc与g++:
apt-get install gcc-4.9g++-4.9
之后进入/usr/bin:
先删除和gcc5.0关联的gcc:
再建个软连接
(3)环境变量配置
打开~/.bashrc文件:
将以下内容写入到~/.bashrc尾部:
(4)测试CUDA的sammples
如果现实一些关于GPU的信息,则说明安装成功。
4.配置cuDNN
cuDNN是GPU加速计算深层神经网络的库。 首先去官网(https://developer.nvidia.com/rdp/cudnn-download)下载cuDNN,可能需要注册一个账号才能下载。由于本人的显卡是GTX1080,所以下载版本号如下图: 图4.cuDNN下载 下载cuDNN5.1之后进行解压,cd进入cuDNN5.1解压之后的include目录,在命令行进行如下操作:
再将cd进入lib64目录下的动态文件进行复制和链接:
5.安装opencv3.1
使用完上面的命令后,依赖已经安装完毕,但是由于Ubuntu 14.04版本的原因,导致opencv相关的环境不能够正常的work。所以,我重新编译了一个OpenCV,版本为3.1.0。
在解压后的目录中执行:
bigtop@bigtop-SdcOS-Hypervisor:~/tools/opencv-3.1.0$ cmake -DBUILD_TIFF=ON
然后执行make 和make install
以上是我亲自试过的。。
从官网(http://opencv.org/downloads.html)下载OpenCV,并将其解压到你要安装的位置,假设解压到了/home/opencv。
安装前准备,创建编译文件夹:
配置:
编译:
以上只是将opencv编译成功,还没将opencv安装,需要运行下面指令进行安装:
可能会出现的错误:
错误内容1:
说明gcc与g++版本不兼容,解决办法跟gcc版本太高时一样:
安装低版本gcc与g++:
之后进入/usr/bin:
先删除和gcc5.0关联的gcc:
再建个软连接
错误内容2:
这是因为opecv3.0与cuda8.0不兼容导致的。解决办法:
修改 ~/opencv/modules/cudalegacy/src/graphcuts.cpp文件内容,如图:
图5.文件修改
6.配置caffe
(1)将终端cd到要安装caffe的位置。
(2)从github上获取caffe:
注意:若没有安装Git,需要先安装Git:
(3)因为make指令只能make Makefile.config文件,而Makefile.config.example是caffe给出的makefile例子,因此,首先将Makefile.config.example的内容复制到Makefile.config:
(4)打开并修改配置文件:
根据个人情况修改文件:
a.若使用cudnn,则
b.若使用的opencv版本是3的,则
c.若要使用Python来编写layer,则
1配置python layers
2安装几个依赖